
UNIVERSITY OF WATERLOO
Faculty of Mathematics

DESIGN DECISIONS FOR EFFICIENT EXTENSIBLE
MARKUP LANGUAGE PARSING

Crank Software Inc.
Storyboard Software Developer (co-op)

Kanata, Ontario, Canada

Samuel Wanuch
20521149

2B Computer Science
January 14, 2016

Table of Contents

List of Figures . iv

Summary . vi

1.0 Introduction . 1

1.1 Extensible Markup Language 1

1.2 ANSI C89 . 3

1.3 Memory Allocation . 4

1.4 Valgrind Massif . 5

1.5 Analysis Method . 7

1.6 Design Choices . 8

2.0 Analysis . 9

2.1 Final Implementation . 9

2.2 Reference Counting Strings . 11

2.3 String Handles . 14

2.3.1 Maximum Usable Strings 17

2.4 XML Structure . 18

2.5 Attribute Name Sets . 21

2.6 Batch Allocators . 24

2.6.1 Attribute Value Allocation 24

2.6.2 XML Node Allocation 27

2.7 Original Version . 30

i

3.0 Conclusions . 34

4.0 Recommendations. 36

References . 37

ii

List of Figures

Figure 1 Final Implementation: Small 9

Figure 2 Final Implementation: Medium 10

Figure 3 Final Implementation: Big 11

Figure 4 No Reference Counting: Small 12

Figure 5 No Reference Counting: Medium 12

Figure 6 No Reference Counting: Big 13

Figure 7 String Pointers: Small 15

Figure 8 String Pointers: Medium 15

Figure 9 String Pointers: Big 16

Figure 10 Structure Pointers: Small 19

Figure 11 Structure Pointers: Medium 19

Figure 12 Structure Pointers: Big 20

Figure 13 Individually Stored Attribute Names: Small . . 22

Figure 14 Individually Stored Attribute Names: Medium . 22

Figure 15 Individually Stored Attribute Names: Big . . . 23

Figure 16 Individually Allocated Attribute Values: Small . 25

Figure 17 Individually Allocated Attribute Values: Medium 25

Figure 18 Individually Allocated Attribute Values: Big . . 26

Figure 19 Individually Allocated Nodes: Small 28

Figure 20 Individually Allocated Nodes: Medium 28

Figure 21 Individually Allocated Nodes: Big 29

iii

Figure 22 Original: Small 31

Figure 23 Original: Medium 31

Figure 24 Original: Big 32

iv

Summary

The purpose of this report is both to justify the decisions made in the design
of a memory efficient Extensible Markup Language (XML) parser, and to give
insight to any employees who may have to work with the XML parser into
how it works, and ways it can be improved.

The analysis will cover the both the differences in performance and reasons
for those differences between versions with and without the following features:

• Reference counting strings

• String handles

• Implicit XML structuring

• Unique attribute name sets

• Batch allocation of attribute value arrays

• Batch allocation of XML nodes

The final result of these optimizations is an XML parser which is at worst 3
times slower, but uses almost 10 times less memory compared to the existing
XML parser.

Further improvements in speed can be made by investigating more efficient
ways to compare a string to the existing reference counted strings. To improve
memory, it is possible that certain XML tags in the file format will always have
the same tag name when they have the same attribute names, which would
allow only unique combinations to be stored, instead of storing tag names
individually.

v

1.0 Introduction

The main product of Crank Software Inc. is a user interface solution which

allows for quick prototyping and and quality user interfaces across a wide range

of devices (Crank Software Inc.: About). This range of devices stretches from

high end computers to embedded systems with extremely limited resources.

On the embedded systems, starting up the user interface with the Storyboard

Engine is a difficult task, as multiple parts of the engine are allocating large

amounts of memory. In order to improve the performance of the Storyboard

Engine, especially on these constrained systems, it was decided that the as of

yet unoptimized Extensible Markup Language (XML) parser which reads in

the description of the user interface should be rewritten to be more efficient.

The goal of the efficient XML parser is to swiftly parse read only XML files

into an easy to use representation with the minimum amount of memory al-

locations. While speed is important, minimizing memory allocations is more

valuable.

1.1 Extensible Markup Language

The Extensible Markup Language, otherwise known as XML, is a flexible file

format designed to be both human and machine readable, emphasizing sim-

plicity, generality, and usability (Extensible Markup Language: Introduction).

It is based on using nested named tags which have both attributes, and con-

tents. Here is an example:

1

Listing 1: XML Example

<tag >

<tag -name attribute -name="attribute -value">

Contents of tag -name

<nested -tag a="1" b="2">

Contents of nested -tag

</nested -tag>

<other -nested -tag >

</other -nested -tag >

</tag -name >

</tag >

The sample above has 4 tags, with the names ”tag”, ”tag-name”, ”nested-tag”,

”other-nested-tag”.

The tag named ”tag-name” has the attribute ”attribute-name” with a value

of ”attribute-value”. The tag named ”nested-tag” has the attributes ”a” and

”b”, with the values of ”1”, and ”2” respectively.

The tag named ”tag-name” has the text contents ”Contents of tag-name”, and

the tag named ”nested-tag” has the contents ”Contents of nested-tag”.

The tag named ”tag” has one child, the tag named ”tag-name”. That tag in

turn has two children, the tags named ”nested-tag” and ”other-nested-tag”,

neither of which have children.

2

1.2 ANSI C89

In order to ensure the XML parser is compatible with as many systems as

possible, it will be written in the C standard created by the American National

Standards Institute (ANSI), specifically the standard referred to as C89.

ANSI C89 guarantees the following maximum value for these basic data types

(ANSI C89):

unsigned char 255

unsigned short 65, 535

unsigned int 65, 535

In order to encode this range, that means the data types must at minimum

have the following number of bytes:

unsigned char 1 byte

unsigned short 2 bytes

unsigned int 2 bytes

Of particular interest is the fact that a short may be the same size as an int on

some platforms. Since using an int and expecting it to be the more expected

4 bytes long would not be portable, and expecting it to be the same size is

effectively the same as using a short, any data type which would have been an

3

int in the parser will instead be a short. No larger basic data types are used

apart from pointers.

All tests for the original XML parser and the various new versions were done

on a 64-bit virtual machine running Ubuntu 15.10, and compiled using GCC

with the flag -O3 for optimization. The most important result of this is that

pointers in the program are actually 8 bytes long.

1.3 Memory Allocation

The reader is expected to be familiar with the concept of allocating memory

on the heap. However, the way this memory is allocated is not necessarily

common knowledge.

All heap memory used in the implementations will be allocated via malloc.

While ideally malloc would always return exactly the requested amount of

space, and never prevent any other memory from being used, the reality of the

problem is otherwise.

The ANSI C89 standard states that the memory returned by malloc ”is suit-

ably aligned so that it may be assigned to a pointer to any type of object and

then used to access such an object in the space allocated” (ANSI C89). This

means that malloc may align all allocated memory to a certain byte boundary,

such as 4, 8, or 16 bytes. While this may seem insignificant, it does mean that

allocating an object with a size that isn’t a multiple of 4 or 8 or 16 wastes a

certain amount of bytes. For instance, if the memory is aligned to a 4 byte

4

boundary, then allocating an object which is 6 bytes large wastes 2 bytes, as

the 2 bytes immediately after the object cannot be allocated for another object

as they do not begin at the 4 byte boundary.

Additionally, as per Valgrind’s massif, there are two sources of ”wasted” mem-

ory that was not asked for (Valgrind Massif: User Manual):

Administrative Data Each block of memory returned by malloc has a num-

ber of additional bytes of data immediately before it. Generally this is

used by malloc to record the size of the allocated block.

Rounding Many implementations of malloc round up the number of bytes

requested to a larger number, this is essentially the same as the alignment

issue mentioned above.

Another source of wasted memory is fragmentation. This problem arises when

memory is continually allocated and freed, and the available memory becomes

fragmented into small scattered blocks. This can result in a large amount of

memory being available, but unable to be used as it is in such small pieces

surrounded by other allocated blocks that no free piece is large enough to

use.

1.4 Valgrind Massif

In order to measure the speed and memory usage of the various implementa-

tions, the Valgrind massif tool will be used.

5

Valgrind is a well known framework for dynamic analysis tools which can an-

alyze running programs. It is most well known for it’s default tool Memcheck,

which records memory allocations and frees to detect a wide range of memory

related errors (Valgrind Memcheck: User Manual).

The Massif tool focuses on analyzing when and how much memory is allocated

by a program (Valgrind Massif: User Manual). The memory is measured in

bytes, although for larger amounts, 1 kilobyte (kb) will refer to 1, 000 bytes, 1

megabyte (mb) will refer to 1, 000 kilobytes. In order to give a reliable mea-

sure of time while the program runs, massif measures the number of machine

instructions a program uses before it completes. This is likewise referred to in

terms of 1, 000 instructions (i) per kilo-instruction (ki), 1, 000 kilo-instructions

per mega-instruction (mi), and 1, 000 mega-instructions per giga-instruction

(gi).

Massif differentiates between the requested memory allocated, and the extra

memory allocated due to the issues mentioned in the Memory Allocation sec-

tion above. Performance comparisons will be based off of the total memory

allocated, which is the sum of the two.

All performance tests will be using the following command: ”valgrind –tool=massif

–stacks=yes –max-snapshots=1000 –detailed-freq=1”. The memory an imple-

mentation uses on a given test will be the memory used as reported by massif

at peak memory usage.

6

1.5 Analysis Method

All analysis will be done using the Valgrind massif tool. the graphs shown

will be from the massif-visualizer tool (Massif Visualizer: Overview). Each

implementation of the XML parser will be run on three distinct inputs, rep-

resenting the smallest valid input, an average use case input, and the largest

existing input which could be found. These three test cases will be referred to

respectively as small, medium, and big.

It should be noted that test case is more important than the small or large

test cases. The small test case is tiny enough that any reasonable use case is

at a minimum, twice as large. The big test case is massive enough that even

the next largest use case is one fourth the size. The small and big test cases

are meant to represent the lower and upper limits of size the XML parser is

expected to be able to handle.

In order to justify a design choice, the final implementation’s performance

will be compared to the performance of a version which differs only in that it

makes the opposite choice. Performance will be compared primarily based on

the memory used by each version, and to a lesser extent, based on the speed

of each version, on the three test cases. All numbers will be recorded to 4

significant digits.

7

1.6 Design Choices

The following design choices will be examined in this report:

• Reference counting strings

• Using string handles

• Implicitly defining the XML structure

• Storing only unique attribute name sets

• Batch allocation of attribute value arrays

• Batch allocation of XML nodes

8

2.0 Analysis

2.1 Final Implementation

The final implementation is the version that all other versions will be compared

to. When parsing the empty file, this implementation uses 5.664 kilobytes.

The small test case is the minimum viable file, with a file size of 1, 206 bytes,

and the final implementation parses it using 14.30 kilobytes of memory, com-

pleting in 435.6 thousand instructions. This test case wastes 2, 166 bytes of

memory.

Figure 1: The final implementation running on the small test case: 14.30 kb

in 435.6 ki

The medium test case is part of a user interface created by a co-worker, and a

good indication of an expected use case, with a file size of 182, 754 bytes. The

9

final implementation parses it using 133.4 kilobytes of memory, completing in

50.27 million instructions. This test case wastes 21.30 kilobytes of memory.

Figure 2: The final implementation running on the medium test case: 139.1

kb in 50.27 mi

The large test case is the largest use case that could be found, and represents

the upper limit of size the parser will be used on, it is 796, 995 bytes large. The

final implementation parses it using 533.8 kilobytes of memory, completing in

250.8 million instructions. This test case wastes 75.48 kilobytes of memory.

10

Figure 3: The final implementation running on the big test case: 533.8 kb in

250.8 mi

It is worth nothing that in each case except the small test case, the final

implementation parses and represents the input file using less memory than

the size of the file.

2.2 Reference Counting Strings

Reference counting strings proved to be one the most effective ways of limiting

memory usage for the XML parser, as well as one of the largest impacts on

speed. This was implemented by reading in strings from the file one at a time,

checking each time to see if another equal string already existed; referencing

such a string when it did exist and starting to track any new string.

The following graphs compare the final implementation on the left to a version

11

that does not reference count strings on the right:

Figure 4: Parsing the small test case without reference counting strings: 13.15

kb in 391.9 thousand instructions

Figure 5: Parsing the medium test case without reference counting strings:

591.6 kb in 40.31 million instructions

12

Figure 6: Parsing the big test case without reference counting strings: 2, 334

kb in 169.2 million instructions

As the graphs show, the final implementation uses significantly less memory

than the non-reference counted version in the medium and big case, but slightly

more in the small case. In the small case this can be put down to there being so

few strings that reference counting has little benefit, along with the memory

required for extra data structures used for efficient reference counting. In

the medium and big case, the final implementation uses 24% and 23% of the

memory respectively.

Thanks to the nature of the file format, many strings are repeated, such as

tag names and attribute names, and often many attribute values are repeated

as well. Reference counting also benefits from standardized naming system, as

these are likely to produce identical strings. These factors allow the final im-

plementation to use about one fifth of the memory of a non-reference counting

13

implementation.

The runtime costs of reference counting can be seen here as well, as the fi-

nal implementation is consistently slower, running 1.11, 1.25, and 1.48 times

slower, compared to the non-reference counting version. This is due to ref-

erence counting requiring each new string to be compared to be compared

to potentially equal strings, the cost of which only increases as more unique

strings are added.

Overall, using reference counted strings slows down performance anywhere

from 10% to 50%, but makes up for it by decreasing memory usage to almost

as low as 20%. Therefore, reference counting strings is the efficient choice.

2.3 String Handles

The majority of information used to represent the XML file being parsed is

strings. The simplest way to reference these strings is just to store a pointer

to a string anywhere a string is needed. Since strings need to be referenced

in so many places, they should be referenced as efficiently as possible. While

pointers are the obvious data type, an unsigned short can be significantly

smaller, with the use of some indirection to use the unsigned shorts as a handle

to a string.

The following graphs show the performance of a version using string pointers:

14

Figure 7: Parsing the small test case using string pointers: 19.55 kb in 387.7

thousand instructions

Figure 8: Parsing the medium test case using string pointers: 260.1 kb in 39.89

million instructions

15

Figure 9: Parsing the big test case using string pointers: 481.0 kb in 188.7

million instructions

The final implementation used 66%, 53%, and 54% less adjusted memory

respectively. This points to the final implementation using roughly half the

memory of the version with pointers to strings. This can be attributed to the.

Using string handles slows down performance by approximately 1.12, 1.26,

and 1.33 times for the test cases small, medium, and big respectively. This is

attributable to the layer of indirection required to use handles as opposed to

the relatively direct access given by pointers.

While using pointers is faster, it is at best only 33% faster. The memory

usage on the other hand almost doubles when using pointers. Even if memory

efficiency were not more important than speed, the memory wins here are still

larger than the speed impact. Therefore, using string handles is the efficient

16

choice.

2.3.1 Maximum Usable Strings

It should be noted that on the majority of systems, a pointer will be able

to handle more strings than an unsigned short. The ANSI C89 standard

only guarantees that an unsigned short can hold up to USHRT MAX, which

is 65, 535. This means that at most that many strings can be used. With

reference counting, this can be improved to 65, 535 unique strings, which is an

important difference as many tag names and attribute names are the same in

XML files.

In order to lessen the constraints of this limitation, the system has been de-

signed to use constants for all single character strings and the empty string,

which can be common as single character XML tokens such as ’<’, or with

this specific file format, the attribute name ”k”. This means that the limit

can be improved to 65, 535 unique or not unique strings at least 2 characters

long.

Analysis of all available samples shows that the maximum number of strings

used is in the big test case, with 72, 628 strings at least 2 characters long.

This is unfortunately over the maximum limit, although it is an outlier, as the

next largest sample uses only just over 24, 000 strings, which is well within the

limits.

While going over the limit is unacceptable, reference counting can be used to

17

further improve on the usage. With reference counting, even the big test case

is reduced to 3, 007 unique strings at least 2 characters long, and still uses the

most. The majority of other cases fall under 1, 000 such strings. This allows

for the file format to grow up to 24 times larger, while maintaining the same

rate of unique strings, before the limit is reached.

If such a limit is ever reached, changing to a 4 byte data type would still

improve memory usage on systems with 8 byte pointers, but considering the

focus on embedded systems which are unlikely to be 64-bit, it is unlikely to

improve memory usage on most target systems. Therefore it would be best to

switch back to using pointers for the speed benefit.

2.4 XML Structure

One of the difficulties of representing the structure of XML, is representing

the relationship between nodes, namely, each node has to know which nodes

belong to it, in which order. The simple solution is to store a list of pointers

to children. A more complex implementation takes advantage of the fact that

XML nodes are read in order, meaning that the order the nodes are allocated is

the same as the order the nodes should be in. This allows a node to track only

the number of descendants it has, direct or otherwise. This takes advantage

of allocation order to implicitly define the structure of the XML file.

The pointer based version was inefficiently implemented for speed, and as such

the speed should be ignored. The following is the performance for the pointer

18

based version:

Figure 10: Parsing the small test case using structure pointers: 17.36 kb in

457.7 thousand instructions

Figure 11: Parsing the medium test case using structure pointers: 355.0 kb in

678.9 million instructions

19

Figure 12: Parsing the big test case using structure pointers: 1, 183 kb in 7.897

billion instructions

As can be seen, the pointer based version consistently uses significantly more

memory, 1.21, 2.55, and 2.22 times more memory for the small, medium, and

big test cases respectively.

The cause of this comes down to the extra memory required to store pointers

to children. At best, a node will have no children, and so only requires the

storage space for a NULL pointer signifying an empty list. When children

are added, this requires a pointer to the list, along with a pointer for each

child. Since there is only one node which is not a child of another, and each

node must have at least the pointer to the list, this approach will use about

2 pointers for every node. The final implementation on the other hand, uses

only one unsigned short for every node. Even on a system with 2 byte pointers,

this still means the final implementation uses half the memory, and systems

20

with larger pointers will only save more memory.

While using pointers efficiently would likely improve the speed of the XML

parser, the current speed is already acceptable, and having to, at a minimum,

double the space required to define the XML node hierarchy is an unacceptable

price to pay. Therefore with the interests of memory efficiency in mind, not

using pointers is the more efficient choice.

2.5 Attribute Name Sets

After analyzing the data being stored in XML nodes, it occurred to me that

there was a major source of duplication amidst the data. The majority of XML

nodes could be grouped into a small number of categories which all shared the

same attribute names. Yet every node stored the names of their attributes

individually. This was changed to instead record which set of attributes the

node has, and only store the attribute names once.

The graphs below show the performance of a version which stores attribute

names individually in each node:

21

Figure 13: Parsing the small test case while storing attribute names in each

node: 14.44 kb in 429.6 thousand instructions

Figure 14: Parsing the medium test case while storing attribute names in each

node: 186.6 kb in 48.13 million instructions

22

Figure 15: Parsing the big test case while storing attribute names in each

node: 722.4 kb in 229.8 million instructions

The small test case uses 99% of the memory with the final implementation,

and runs 1% slower for it. The medium and big test cases use 75% and 74% of

the memory of the individually stored attribute names version respectively, but

run 4% and 9% slower respectively for it. The better memory usage can be put

down to no longer storing duplicate attribute names, and the slower runtime

to having to access the attribute names indirectly as opposed to directly from

the node.

The improved memory usage far outweighs the performance cost, and as such,

the efficient choice is to store only unique attribute name sets.

23

2.6 Batch Allocators

A few types of data structures in the XML representation end up with a

significant number of instances, to that end, there is a question of whether it

is better to allocate them individually or separately.

The following versions have decreased memory usage in the final implemen-

tation that may be unexpectedly large, as technically the same amount of

memory should be allocated, if not slightly more in the final implementation

for the bookkeeping required for batch allocation. The explanation for this

lies with the way that malloc works.

The following two comparisons will focus on wasted memory, which refers to

unusable memory created by malloc, either from fragmentation, or the extra

memory that malloc allocates for its own reasons.

2.6.1 Attribute Value Allocation

One of the more common allocations required by the XML parser, is allocating

an array to hold the attribute values for a node. Since the majority of XML

nodes need such an array, they make a good candidate for batch allocation.

The final implementation allocates these arrays in batches based on the size

of the required array, maintaining separate batch allocators for distinct array

sizes.

The graphs below show the performance of a version which individually allo-

24

cates attribute value arrays:

Figure 16: Parsing the small test case while individually allocating attribute

value arrays: 16.02 kb in 435.1 thousand instructions

Figure 17: Parsing the medium test case while individually allocating attribute

value arrays: 265.6 kb in 50.3 million instructions

25

Figure 18: Parsing the big test case while individually allocating attribute

value arrays: 1, 005 kb in 251.2 million instructions

The small test case in the final implementation uses 89% of the memory of

the individually allocated version, and runs in almost the same number of

instructions. The medium and big test cases use 63% and 66% of the memory

and also run in almost the same number of instructions.

The fact that both versions complete in almost the same number of instruc-

tions indicates that individually allocating each array of values requires ap-

proximately the same number of instructions as the system set up to allocate

them in batches.

As expected, the difference in memory is significantly larger than would other-

wise be expected from a system which should theoretically use more memory.

This is all down to wasted space, and on the three test cases the individually

26

allocated version wastes at peak memory usage 2,388 bytes, 102,944 bytes,

and 354,485 bytes of memory respectively. While there is very little difference

for the small test case, the medium and big test case waste almost five times

more memory with individual allocation.

Since the difference in speed is essentially non-existent, and batch allocating

the value arrays prevents a significant amount of wasted space, batch allocation

for value arrays is the efficient choice.

2.6.2 XML Node Allocation

Another frequently allocated object in the XML representation is the XML

node. The final implementation allocates large pools of them at once instead

of individually allocating them. Due to implementation constraints, this fea-

ture had to be built on top of the version used in the XML Structure section,

which uses pointers to track children of nodes. As a result, the memory dif-

ference is larger than it otherwise would be, and due to the inefficient speed

implementation of that version, the speed of this version must likewise be

ignored.

The graphs below show the performance of a version which individually allo-

cates XML nodes:

27

Figure 19: Parsing the small test case while individually allocating XML nodes:

17.41 kb in 458.4 thousand instructions

Figure 20: Parsing the medium test case while individually allocating XML

nodes: 396.5 kb in 678.8 million instructions

28

Figure 21: Parsing the big test case while individually allocating XML nodes:

1, 402 kb in 7.897 billion instructions

The final implementation uses significantly less memory in each test, however

the memory usage still needs to be adjusted to account for the individually

allocated version being built on top of another version. For the adjustment,

the difference between this version and the version used for the XML Struc-

ture section will be used as the difference between this version and the final

implementation. To that end, the adjusted memory usage is as follows:

Small: 14.35 KB, with a difference of 0.050 KB, and an adjusted 2, 479 bytes

of wasted space, with a difference of 313 bytes

Medium: 180.6 KB, with a difference of 41.50 KB, and an adjusted 85, 820

bytes of wasted space, with a difference of 64, 520 bytes

Big: 752.8 KB, with a difference of 219.0 KB, and an adjusted 309, 731 bytes

29

of wasted space, with a difference of 234, 248 bytes

This works out to the final implementation using approximately the same

amount of memory on the small test case, and approximately 77%, and 71%

of the memory for the medium and big test cases respectively. While the

difference in wasted space for the individually allocated version is slightly larger

than the actual difference in memory usage, this can be attributed to trivial

differences in implementation and inaccuracy from the rough adjustment.

It can be inferred from the section on Attribute Value Allocation that the

difference in speed between batch allocation and individual allocation for nodes

should be insignificant. Based on the rough adjustments, batch allocation

will also likely save an estimated 20% in wasted memory. Therefore, batch

allocating XML nodes is the efficient choice.

2.7 Original Version

The graphs below show the performance of the original XML parser.

30

Figure 22: Parsing the small test case with the original XML parser: 17.87 kb

in 337.1 thousand instructions

Figure 23: Parsing the medium test case with the original XML parser: 1, 015

kb in 19.92 million instructions

31

Figure 24: Parsing the big test case with the original XML parser: 4, 068 kb

in 87.34 million instructions

The final implementation uses less memory in every case, significantly less in

the medium and big test cases. On the other hand, the original version is

faster in every case. The final implementation parses the small test case 1.29

times slower, but uses 80% of the memory. The medium test case is parsed

2.52 times slower, and uses 14% of the memory. The big test case is parsed

2.87 times slower, and uses 13% of the memory.

This shows that the final implementation runs anywhere from approximately

as fast to 3 times slower. This can be attributed to every design choice con-

ceding worse speed for better memory usage. The memory usage of the final

implementation uses anywhere from almost the same amount of memory to

almost 10 times less memory. Once again attributable to all the design choices

being made to minimize memory usage.

32

While the final implementation is slower than the original XML parser, the

speed difference is less than 3 times slower, while the memory difference is 10

times less memory used by the final implementation. Since the original XML

parser was already extremely fast, 3 times slower is an acceptable speed. The

significantly reduced memory usage is in line with the goal to use less memory.

Overall, the final implementation is the more efficient choice, especially as

limiting memory usage is more important than speed.

33

3.0 Conclusions

Based on the above analysis, the most significant improvement in terms of

memory usage, was reference counting strings, as this removed a massive

amount of data duplication. This allowed the XML parser to use almost a

fifth of the memory that would otherwise be required.

The next best improvement came from using an implicit definition of the

structure of XML as opposed to pointers to children, which removed the need

for a massive number of pointers. The result is that the final implementation

uses less than half of what would otherwise be required.

Using string handles instead of pointers is a seemingly small change which still

managed to cut memory usage almost in half thanks to the much smaller size

of the handle compare to a pointer.

Due to having to allocate an array of attribute values for almost every node

in the XML file, allocating these arrays in batches reduced memory to about

75% of what it would otherwise be. This is primarily thanks to reducing the

wasted space that quickly grows with individual allocations .

Similarly, batch allocating the XML nodes themselves netted a similar mem-

ory reduction to about 74% of what would have been used. Once again show-

ing that large amounts of individual allocations start to waste memory very

quickly.

Finally, storing only unique attribute name sets reduced duplication in the

34

XML nodes, allowing for a 75% reduction in memory used. This is attributable

to storing attribute name sets in a central location instead of each node storing

the same set of names again and again.

Based on the goals of memory efficiency and speed, the various versions of the

XML parser were judged based on their memory used and instructions required

to parse input for three representative test cases. The memory usage was the

most important concern, with a focus on limiting the number of allocations.

The speed of the XML parser, measured in instructions for convenience, is a

secondary concern, as the XML parser still has to be fast.

The final implementation of the efficient XML parser runs at worst, three

times slower than the original XML parser, but makes up for it by using up

to ten times less memory. The final implementation surprisingly manages to

reliably use less memory than the size of the input file to parse and represent

the XML within.

35

4.0 Recommendations

While the final implementation of the efficient XML parser is an improvement

on the original version, there is still room for improvement.

The final implementation can run up to three times slower than the original,

and while the original was extremely fast, it would still be great to improve

the speed of the new parser. Reference counting strings, while a great win

for memory usage, had a significant impact on speed. Not only does it re-

quire a significant amount of comparisons for each new string, the number of

comparisons required only increases as the input grows larger. While this was

implemented using basic hashing to limit the number of comparisons required,

this could still be improved, possibly using a more advanced system such as a

Trie or Patricia Tree.

If more speed is required, the final implementation was not optimized using

code profiling, and the use of such tools may point to sections of code which

could be rewritten for improved performance.

If further improvements to memory efficiency are required, it may be possible

that the unique attribute name sets may also match up with unique tag names,

such that in most cases, two tags with the same name share the same attribute

names. This would allow the tag name to be stored with the attribute name

sets to remove a string handle from the node data structure.

36

References

1 Crank Software Inc.: About. Retrieved 16 December, 2015 from

http://www.cranksoftware.com/about

2 Extensible Markup Language: Introduction. Retrieved 16 December,

2015 from http://www.w3.org/XML/

3 ANSI C89. Retrieved 16 December, 2015 from

http://port70.net/~nsz/c/c89/c89-draft.html

4 Valgrind Memcheck: User Manual. Retrieved 16 December, 2015 from

http://valgrind.org/docs/manual/mc-manual.html

5 Valgrind Massif: User Manual. Retrieved 16 December, 2015 from

http://valgrind.org/docs/manual/ms-manual.html

6 Massif Visualizer: Overview. Retrieved 16 December, 2015

from https://projects.kde.org/projects/extragear/sdk/

massif-visualizer

37

http://www.cranksoftware.com/about
http://www.w3.org/XML/
http://port70.net/~nsz/c/c89/c89-draft.html
http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/ms-manual.html
https://projects.kde.org/projects/extragear/sdk/massif-visualizer
https://projects.kde.org/projects/extragear/sdk/massif-visualizer

	List of Figures
	Summary
	Introduction
	Extensible Markup Language
	ANSI C89
	Memory Allocation
	Valgrind Massif
	Analysis Method
	Design Choices

	Analysis
	Final Implementation
	Reference Counting Strings
	String Handles
	Maximum Usable Strings

	XML Structure
	Attribute Name Sets
	Batch Allocators
	Attribute Value Allocation
	XML Node Allocation

	Original Version

	Conclusions
	Recommendations
	References

