UNIVERSITY OF WATERLOO
Faculty of Mathematics

READING, WRITING, AND (R)OPTIMIZATIONS

Nvidia Corporation
GPU C++ Development Tools Architect
Santa Clara, California, Canada

Samuel Wanuch
20521149
3B Computer Science
May 14, 2017

Table of Contents

List of Figures
SUIMIMATY © « . o ettt e e e e e e e e e e e e e e e
1.0 Introduction
1.1 Cyclestats Parser
1.2 Language and Libraries
1.3 Analysis Method oL
1.4 Test Cases o
2.0 Analysis.o
2.1 boostiregex
2.2 Multithreaded Writing
2.3 Chunked Writing oo
2.4 Multithreaded Loading
25 FileReading
2.6 String References Lo
2.7 Preformatted Strings oL
2.8 Final Implementation Performance Comparisons
3.0 Conclusions
4.0 Recommendations.
References

10
11

Figure 1

Figure 2

List of Figures

Chunked Writing Memory Graph

Final Implementation Comparison

i

Summary

The purpose of this report is to summarize and justify the changes made to
the cyclestats parser for optimization in speed and memory usage. This should
be useful for anyone who has to maintain the relevant project, and make any
further optimizations to it.

The analysis will cover the more important changes, and a brief analysis of
how each change impacts the peformance on both metrics.

e boost::regex

e Multithreaded Writing

e Chunked Writing

e Multithreaded Loading

e File Reading

e String References

e Preformatted Strings

The final result of these optimizations is that the cyclestats parser is 20 times
faster, and uses about 6 times less memory with a tighter limit on amount of
memory it is possible to use.

Further improvements could potentially be found in caching the results of
some string parsing and modification operations and finding a way to share the
usage of commonly used strings instead of creating duplicates. Additionally it
could be worth investigating something like memory pools to try and minimize
wasted space in memory allocations.

il

1.0 Introduction

This report will cover the justifications for and changes to the cyclestats parser

with the aim of making it faster, and lowering the memory usage.

1.1 Cyclestats Parser

The cyclestats parser is a program designed to read in, merge, and write out
a large amount of data. From a high level perspective, the first stage is to
read in data from many files, which typically takes anywhere from a minute
to an hour. The next stage is to combine this data together, which rarely
takes a significant amount of time. The final stage is to write out the different

groupings of the data, which typically takes half an hour to a day.

1.2 Language and Libraries

The cyclestats parser is written in C++14, (the standard can be found in the
references below under (C++ Foundation). This report assumes the reader is
familiar with C++14 and the C++14 standard template library, more informa-
tion about which can be found in the references below under (CPPReference).
Additionally, this project makes use of and assumes the reader has some fa-
miliarity with the boost c++ libraries, more information about which can be

found in the references below under (Boost).

This report further assumes the reader has a basic grasp of the concepts of mul-

tithreading, memory allocation, regular expressions, and, reading and writing

files.

1.3 Analysis Method

This report will cover changes made to the cyclestats parser in the use of
boost::regex, the addition of multithreading for reading and writing files, an
improved memory usage pattern for file writing, string references, and pre-
formatting strings. Each point will include some analysis of the runtime and

memory impact.

The analysis of each change will be will be an explanation for how and why it
might affect the performance metrics of runtime and memory usage. This anal-
ysis may be accompanied by actual timings and memory usage graphs. The
timings are done by having the program itself output the time since the pro-
gram started before it exits. The memory graphs are taken from the Windows
7 Task Manager’s performance tab, and more specifically from the Physical
Memory Usage History graph. Finally, the final implementation will be anal-
ysed. The performance metrics will be as recorded on a Windows 7 machine,
with an Intel i7-5820k CPU, 16 gigabytes of RAM, and an SSD with sequential

read /write capabilities of 540/520 megabytes per second respectively.

1.4 Test Cases

Analysis will be done on a test case which uses enough memory to crash the
test machine using the original code, since this test case was the impetus for
these changes; this test case will be referred to as the standard test case.
Further analysis may be done on a small input, referred to as the small test
case, or a large input, referred to as the large test case. The standard test case
reads 444,987,569 bytes (424 megabytes) from 5 files, and writes 1,127,350,307
bytes (1.04 gigabytes) to 1558 files. The small test case, which is used mainly
for loading tests, reads 219,849,981 bytes (209 megabytes) from 38 files. The
large test case reads 7,350,499,141 bytes (6.84 gigabytes) from 38 files, and
writes 16,255,564,798 bytes (15.1 gigabytes) to 7,336 files.

2.0 Analysis

2.1 Dboost::regex

Since the design of the cyclestats parser relies heavily on pattern matching,
it also relies heavily on the boost regex libraries. While one would hope that
the creators of the library would implement an efficient constructor for the
boost::regex pattern object, it is undoubtebly not efficient enough when cre-

ating a creating a new regex multiple times per line, per file.

Since the regex patterns in question do not change from instantiation to in-
stantiation, simply making each usage static so that the constructor does not
keep getting rerun is a significant improvement. Admittedly this creates the
risk that enough static regex patterns will use up inconvenient amounts of
memory, but if you actually find this has become a problem, you likely have

some serious design problems to work out.

The effect on memory is negligible since the memory has to be allocated either
way. Since regular expressions are heavily used for complex parsing inside
of the cyclestats parser, removing the need to construct the patterns every
time halved the runtime of the program. For the most significant offender,
reconstructing the regex pattern on every use slows down the standard input
runtime to 20 minutes compared to the significantly improved 82 seconds of

the final implementation.

2.2 Multithreaded Writing

The majority of the runtime for the cyclestats parser is spent on writing files.
Since writing a file does not modify any of the data, it is a natual decision to
try and multithread the writing. While it is possible that the multiple threads
could write faster than the storage medium’s write speed, number to string
formatting and compression (both heavily used in typical runs) prevent this.

The number of threads used is set to however many cores the system has.

In terms of runtime, this is a fairly straightforward win. With the multithread-
ing system set to use only one thread during writing, the standard input takes
9.5 minutes to run to completion. This is approximately 6 to 7 times slower,
which is mildly disappointing considering the system in question supports 12
threads. Some overhead though is not entirely surprising, and this is still an

obvious improvement.

For memory usage, any memory used for writing each file will be multiplied
by however many threads on the system. The original design of the system
requires writing the entire file into memory, in order to then write the com-
pressed file to disk, which ends up requiring multiple continuous segments of
memory often over a gigabyte in size. This is mitigated by the next change.
In practice, the final implementation uses approximately 200 megabytes more

memory when using 12 threads than when using 1.

2.3 Chunked Writing

Anytime file compression is required the original design writes the entire file
into memory before being compressed and written to the disk. The uncom-
pressed files can often get over a gigabyte in size and require a continuous slab
of memory to hold. In order to solve both the continuous memory problem
and the massive memory usage problem, we instead write the uncompressed

file in chunks which are periodically written out to disk.

If each chunk of memory is of equivalent size, they can be easily reused and it
becomes easier to reason about how the changes affect memory and runtime.
A size of 32 megabytes was chosen as a good medium between small and large
sizes. It provides a large enough chunk of memory to write out most small files.
At the same time is is small enough that at most a reasonably small amount
of memory can be wasted. Since systems are expected to have 8 to 32 threads
supported, 32 megabytes will waste at most 256 to 1024 megabytes of space.
Given that the original design typically uses tens of gigabytes of memory, one

gigabyte of waste seemed like a reasonable choice.

Each file is written as instances one by one. After each instance is written, if
more than one chunk of memory was used, all the current chunks are written
out and then recycled. All allocated chunks are shared behind the scenes, so
that once a file is finished writing the chunks allocated for it can be reused for

later files. This helps minimize memory allocation and freeing.

This improves the runtime performance by avoiding the constant reallocation

for storing the ever growing files in memory. The memory usage however
is where this change really shines. Instead of massive spikes of potentially
unlimited memory usage, the new system has a much lower and stricter limit
on total memory usage. Each thread should use at most as many chunks as is
required to hold the longest string of instance data plus one. In practice this
gives a memory pattern with some growth at the start of file writing and then
stable memory usage. A comparison of the memory usage patterns can be
seen below, where the left side shows the memory usage of a prototype of the
chunking system, and the right side shows the memory usage of the original

code.

This graph clearly shows how the original code would struggle to fit large files
in memory, and in fact neither graph shows a complete run since the original
code crashed at the end, and the prototype code was modified to stop at the
same point for this comparison. The graph runs from 0 gigabytes used at the

bottom, to 16 gigabytes used at the top.

Figure 1: Final implementation on the left, original on the right

2.4 Multithreaded Loading

This is probably the most problematic change introduced to the cyclestats
parser. On top of that, it has limited benefit given that file loading is a
comparitively quick problem compared to file writing. However, since it is
extremely valuable to be able to examine file writing in debug mode, and
all the files may need to be loaded to examine a given problem, it is just as

valuable to be able to load the files in debug mode in a reasonable timeframe.

The original design is slow enough in debug mode that the best approach to
debugging the file writing is to give up, or at the very least approach the
problem from a different direction. The multithreaded loading addition makes

debugging the file writing significantly more feasible.

Since the original design assumes the files are loaded sequentially, the code
had to be adapted. Each file now gets its own context to load in. While some
objects, like states, are supposed to be shared between files while loading to
avoid creating duplicates, the new design instead creates these duplicates. An
additional step is added after the files have finished loading to merge the results

of loading the files and combine any duplicates into single objects.

This improves runtime performance for the loading step by approximately
a factor of however many threads are being used, with a small additional
cost required for merging the results at the end. The merge is reasonably
efficient and usually insignificant compared to the improvements. The memory

impact of this is relatively minimal, as there is some amount of overhead used

to create the seperate loading contexts. In practice the standard input uses

approximately 12 megabytes more memory.

2.5 File Reading

The standard template library and boost libraries for C++ are designed to be
able to handle any and all possibilites. While this is very useful in general,
for some cases it means a significant amount of unneccessary overhead. In
specific, each line of each file must be read from the disk, and tokenized based

on whitespace which are either spaces or tabs.

The std::ifstream, for all its marvels, can be rather slow. On the other hand,
the lower level FILE pointers from C do the minimum work necessary to

maximize speed for reading data from the disk.

The next problem is to read the file in units of lines. The standard approach
to this is to use std::getline to read one line from the file into a string. This
is also super adaptable at the price of speed. A more specialized function was

designed to read data into a reusable buffer.

The final problem in this pipeline is to tokenize the line. This was done origi-
nally using the boost::tokenizer which is a reliable and generalized approach.
Of course a generalized approach can always be beaten by a specialized ap-
proach. In this case, aggressive use of memchr, predicated on the fact that

whitespace is expected to be only tabs or spaces.

Memchr is a C function which searches a stretch of memory for a certain
byte value and returns the location, if found. This is presumed to be the most
efficient way to find the next space or tab in a string (and inspecting the actual
performance data of the original code shows that the visual studio compiler

uses memchr inside of std::string::find).

Due to a less optimized memory allocation pattern, removing these improve-
ments increases memory usage for the loading stage of the standard input by
about 100 megabytes. Additionally, simply loading the files for the standard

input ends up taking 28 seconds instead of the much improved 7 seconds.

2.6 String References

The cyclestats parser, by its nature, requires a significant number of unique
strings. However, some of the strings are actually just substrings of others
which remain constant once set. In order to save on memory, we can sim-
ply use a string reference, which requires only two pointers compared to an
entire string copy. While the C++17 standard is rumoured to include string

references, the best available solution is currently boost::string_ref.

Anytime strings will be reliably substrings of another string already being
stored, the string was replaced with a string reference. While this would
appear to be just a memory optimization, the fact that we do not have to
copy strings also helps save significantly on precious cpu cycles which would

otherwise be wasted copying strings. And of course it serves as a pretty nice

10

memory optimization.

2.7 Preformatted Strings

One of the problems with outputting numbers as text is that it is slow. When
writing out the files, a lot of numbers have to be formatted into strings, many
of them the same number being formatted again and again. Since these values
rarely, if ever, change once set, but are formatted multiple times, it becomes

cheaper to create and store formatted strings anytime the values are set.

Any of the values which might have to be formatted multiple times while
writing files had a preformatted string added for the explicit purpose of writing
out. On the one hand, this obviously increases memory usage. Fortunately,
number strings are relatively small, and so the overall memory price is not
hugely costly. This is mainly used on instances, for about 10 values. For the
most part the strings are limited to about 10 characters, so the total impact
is about 10 x 10x the number of instances bytes. For the standard input, this

works out to about 150 megabytes.

While this does increase runtime minutely during loading to create these pre-
formatted strings, it is an almost negligible impact. When writing out the
files, removing only four uses of preformatted strings costs about 20 seconds
on the standard input. This is about 5 seconds per usage. This is admittedly
not a huge improvement, but the more files which need to be written out, the

more impact this change will have.

11

2.8 Final Implementation Performance Comparisons

Unfortunately, the original impetus for these performance improvements was
that the program was crashing on a certain input after running out of memory.
Due to this, a proper comparison of a full run on that input is not possible.
As a reasonable approximation, the program was run up to the crash point,
then rerun, with the exception that it would skip all the files written up to,
and including the file it crashes on. The final implementation is represented
by the red line on the memory usage graph, with the blue line being the
original implementation. Look closely, the red line is there, in the bottom left

corner. The graph runs from 0 to 16 gigabytes vertically, and 0 to 30 minutes

horizontally.

Figure 2: The red line is the final implementation, the blue is the original

For runtime performance, the final implementation takes a mere 80 seconds
to run the standard input. While the original code cannot actually finish
the standard input without crashing, it is a reasonable estimate that it takes
roughly 30 minutes to complete. That makes the final implementation roughly

22.5 times faster. Additionally, the original code used roughly 12 gigabytes

12

of memory at its peak, while the final implementation uses only about 1.8

gigabytes of memory, which is about 6.5 times less.

In terms of simply loading, which is a metric useful for maintenance and debug-
ging, the small input can be loaded in approximately 1 second. It is interesting
to note that since the input files are themselves about 210 megabytes, and the
disk read speed is 550 megabytes per second, the cyclestats parser is able to
read in and merge the data in only twice as much time necessary to only read

the raw data from the disk.

The large input takes a whopping 21 minutes to complete in the final imple-
mentation. Although to be fair, the runtime in the original code was roughly
one "leave it running overnight”, and so having it done within the hour is
certainly a step up. Additionally, it uses 25 gigabytes of memory, and the test
system has a mere 16 gigabytes, so there is some amount of paging to be done.
This ends up being roughly 600 hard faults per second, and while finding the
exact performance cost of this is beyond the scope of this report, it probably

is not cheap.

13

3.0 Conclusions

Based on the above analysis, the cyclestats parser is now considerably faster,
and should have a much stabler and smaller memory usage pattern. The most
important change was the chunked file writing, which puts a soft limit on the

amount of memory the program can consume.

Multithreading the file writing was a relatively safe change which improves
performance by an approximate factor of the number of cores available. While
this improvement is limited by the write speed of the disk being used, in

practice it seems that limitation is still well above our current performance.

For further improving file write speed, adding preformatted strings to the data
was a useful way to avoid repeated and wasteful string formatting. While this
adds some extra memory usage and upfront runtime costs, the overall savings

on speed and limited memory costs make the change worth it.

Similarly, changing boost regular expression patterns to be static is a signifi-

cant improvement to performance for relatively little risk.

Since even loading a file can have significant memory impact, the use of string
references throughout for both temporary and permanent strings helps cut
down on the memory required, and provides a not inconsequential improve-

ment in runtime to boot.

For overall runtime, multithreaded loading is a nice if not overly valuable

improvement. However, since the cyclestats parser is expected to require active

14

maintenance in the future, the ability to quickly load files even while running
in the significantly slower debug mode of the program is well worth it. The

risk this change brings is mitigated by making it an optional setting.

For general loading performance, the file line reading and tokenizing improve-
ments are a useful improvement in speed. Since the nature of the problem is
such that the code should require little to no maintanence in the future, the

added code complexity seems like a reasonable price.

Overall, the cyclestats parser is now 20 times faster, and uses about 6 times

less memory, in a much more bounded manner.

15

4.0 Recommendations

While the final implementation of the cyclestats parser is an improvement on

the original version, there is still room for improvement.

A significant amount of string parsing and manipulation happens inside the
parser, and there may be room for improvement in caching the results of some
of these operations. Additionally, it is expected that a lot of the strings being
stored are less than unique, and there may be some memory savings to be had
by finding such duplicates and storing only a single copy, possibly through the

use of std::shared_ptr.

A more useful memory improvement may be found in smarter memory alloca-
tion, perhaps through memory pools or similar, in order to minimize wasted

memory on multiple allocations.

16

References

1 Standard C++ Foundation: The Standard. Retrieved 27 April, 2017

from

https://isocpp.org/std/the-standard

2 CPP Reference. Retrieved 27 April, 2017 from

http://en.cppreference.com

3 Boost. Retrieved 27 April, 2017 from

http://www.boost.org/

17

https://isocpp.org/std/the-standard
http://en.cppreference.com

	List of Figures
	Summary
	Introduction
	Cyclestats Parser
	Language and Libraries
	Analysis Method
	Test Cases

	Analysis
	boost::regex
	Multithreaded Writing
	Chunked Writing
	Multithreaded Loading
	File Reading
	String References
	Preformatted Strings
	Final Implementation Performance Comparisons

	Conclusions
	Recommendations
	References

